
Memorable Events in Financial Markets

Andrés Carvajal∗ and Keisuke Teeple†

January 22, 2024

Abstract

We assume that financial traders remember certain days—for example, those

when the trader was actively trading—and that these days need not coincide across

traders. This disagreement leads to trade because those who recall bull markets

buy and those who recall bear markets sell. In our equilibrium, which is plagued by

purely non-fundamental volatility, a volatile price history generates belief disper-

sion and subsequent trade ensures continued price volatility. We then characterize

the steady-state cross-sectional distribution when traders remember active trading

days. In the cross-section, young (old) traders, who have not (have) experienced

many trading days, have dispersed (concentrated) beliefs. Equilibrium prices dis-

play excess kurtosis due to the small chance that everyone trading on a particular

day is young.
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1 Introduction

Why are asset prices so volatile? Shiller (2015) has famously shown that the majority of

this volatility cannot be attributed to news alone. Here we introduce a theory of asset

price volatility that relies critically on the past personal experiences of traders. Many

empirical studies support this theory: Malmendier and Nagel (2011) show that individ-

uals who experienced low stock market returns are more pessimistic about future stock

returns. Kuchler and Zafar (2019) show that individuals use personal experiences to form

expectations about aggregate economic outcomes like house prices and unemployment.

Kaustia and Knupfer (2008) show that personally experienced returns from past IPOs,

not passively observed returns, affect future IPO subscriptions. Malmendier and Nagel

(2015) show that individuals overweight inflation experienced during their lifetimes when

forming expectations about future inflation.

An important theoretical benchmark model has been developed by Nagel and Xu

(2022), in which a representative agent has a fading memory. That is, a data point’s

influence on beliefs gradually fades over time. While their setup is appropriate for mod-

eling aggregate shocks like a recession, here we focus on precisely the residual effects.

What we have in mind are memorable events which are idiosyncratic to the trader, like

active trading days. These are days (which may differ across traders) when the trader

holds a nonzero position in a particular asset and personally experiences the gain or

loss. Andersen et al. (2019) show that experiences on such days, as opposed to second-

hand experiences, affect an individual’s risk-taking behavior. Similarly, Strahilevitz et al.

(2011) show that investors are reluctant to repurchase stocks previously sold for a loss.

To summarize, feeling the gain or loss seems to impact individuals more profoundly than

passively observing returns.

Aside from traders failing to recall certain days (or, equivalently, traders failing to

pay attention on certain days), we assume that they are Bayesian.1 They gather what

they can remember, and use this data to form expectations about future returns. Id-

iosyncratic recall generates expectation disagreement amongst traders, which is captured

in the cross-sectional distribution over beliefs. And this disagreement is the motive for

trade: pessimists who recall bear markets sell, and optimists who recall bull markets buy.

We assume that a random subset of traders are active in financial markets during any

1Our model also resembles one of under- and overreaction that can be traced back to Grether (1980).
Mullainathan (2002) also makes this connection: imperfect recall explains under- and overreactions with
respect to Bayes’ Rule.
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given period; this effectively “draws” traders independently from the cross-section and

is, in fact, the only exogenous random variable in the model. This captures the realistic

constraint that traders are not all simultaneously active in financial markets.

The final participant in our economy is a simple linear market maker like the one

from Teeple (2022). This market maker attempts to clear markets by raising prices when

there is excess demand and lowering prices when there is excess supply. When a particular

parameter in the market maker’s problem tends to infinity, we recover the special case

of the classical Walrasian auctioneer. It is this tâtonnement process that generates price

volatility in our setting. The following quote from Bagehot (1971) provides an excellent

summary of our model’s microstructure:

It is well known that market makers of all kinds make surprisingly little use

of fundamental information. Instead they observe the relative pressure of buy

and sell orders and attempt to find a price that equilibrates these pressures.

The resulting market price at any point in time is not merely a consensus of

the transactors in the marketplace, it is also a consensus of their mistakes.

Under the heading of mistakes we may include errors in computation, errors

of judgment, factual oversights and errors in the logic of analysis.

An equilibrium is established in the following sense. We begin with a history of prices

drawn from a discrete time stochastic process, which forms the basis for traders’ beliefs.

Based on what they can recall, traders apply Bayes rule. Based on these posteriors,

a subset of traders trade; and based on trades, the market maker adjusts the price.

Equilibrium prices must have the property that the distribution of current prices matches

that of the history of past prices. Intuitively, it is because prices have always been volatile

that we have dispersed beliefs; this, in itself, drives future price volatility. Given that

there is no news or other shocks in our model, imperfect memory gives rise to purely

non-fundamental volatility.

We show that the discrete time Brownian motion is the unique equilibrium price

process when traders have mean-variance utility. We can eliminate many potential equi-

librium distributions using the fact that few distributions have the stability property.2

In our setting, demands are linear in past price observations due to the mean-variance

assumption, and the sum of demands determines future prices due to the linear mar-

2A distribution is stable when the sum of i.i.d. random variables have that same distribution. The
Normal distribution is a well-known example.
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ket maker. Because equilibrium requires that past and future prices share a common

distribution, stability is necessary for equilibrium.

Up to this point, we took the days which a particular trader remembered as given.

In our main extension, we assume that traders remember the days on which they were

actively trading. This gives rise to learning, and the cross-sectional distribution over sub-

jective returns becomes tighter over time as traders receive more information. In order

to make the model stationary, we assume that traders die at a constant rate and are con-

sequently replaced with traders with a flat prior. The steady-state cross-section consists

of a mixture of the youth (traders who have not traded as much, leading to dispersed

beliefs) and the elderly (traders who have traded many times, leading to tighter beliefs).

This is consistent with survey evidence from Giglio et al. (2021) that older individuals

have tighter subjective distributions over future stock returns. Unlike in the baseline

setting, where belief dispersion is fixed across the cross-section and equilibrium prices

are Normal, in this extension, there is a mixture of belief dispersion across demographics

which leads to excess kurtosis in equilibrium prices. The intuition is as follows: extreme

prices result from the small chance that all traders trading on a given day are young. To

the knowledge of the authors, this mechanism for generating heavy-tailed prices—which

we term youthful volatility—is novel.

We then consider three policies to reduce price variance, and immediately rule one

out: a capital gains tax. While it does dampen capital gains, a gains tax also dampens

wealth volatility, and the net effect goes in the wrong direction: it increases trade volume.

We then compare the distributional consequences of the two remaining effective policies:

a tax on trade volume and tightened borrowing limits. While transaction taxes truncate

trade for the center of the cross-sectional distribution (i.e. small traders), borrowing limits

truncate trade for the tails of the distribution (i.e. large traders).

Recent papers by Malmandier et al. (2020) and Schraeder (2016), which are the

closest studies to ours, augment the fading memory assumption with trader heterogeneity

using an overlapping generations setup. In Schraeder (2016), the young generation is

assumed to be rational while the adult generation is assumed to overweight the previous

period’s observation. In Malmandier et al. (2020), the young generation reacts more

strongly than the old to recent observations, as these make up a larger part of their

lifetimes. So while the key distinction between our model and theirs is the idiosyncratic

versus fading memory, a secondary distinction is that our price volatility is purely non-

fundamental and theirs originates from exogenous dividend risk.

4



The difference between the fading memory setup and ours is the over-weighting

of the previous period observation versus an idiosyncratic observation. First, our as-

sumption is well-supported by studies of human memory. According to the textbook

treatment of strength theory from Kahana (2012), each memory has a fixed numerical

value representing the degree to which that memory evokes a sense of familiarity. Kahana

(2012) comments that it is “reasonable to suppose that items vary in their strength, with

some items being stronger than others.” In fact, strength theory models typically assume

that strength values are drawn from a Gaussian distribution. In our model, we simplify

matters by assuming that observations are either remembered or not (we also extend to

high versus low memory strength). Second, our idiosyncratic assumption is reinforced by

recent economic survey evidence. For example, Dominitz and Manski (2011) find that

traders’ return expectations are interpersonally variable but intrapersonally stable. Simi-

larly, Giglio et al. (2021) find that beliefs are mostly characterized by large and persistent

individual heterogeneity.

The remainder of the paper is organized as follows. Section 2 provides a motivating

example demonstrating the Brownian equilibrium. Section 3 includes a discussion on

uniqueness and considers a richer class of settings, and Section 4 models the cross-section

when traders remember active trading days. Section 5 addresses policy implications.

Section 6 concludes.

2 Motivating Example

Traders. Time is discrete, infinite, and indexed by t ∈ Z, and there is a countable

number of traders of a single long-lived financial asset that pays no dividends. These

individuals should be thought of as retail investors who use technical analysis before

placing market orders.3 Suppose that there is a history of past price realizations − even

at the beginning of the model (t = 0) − and that these past realizations were drawn

from a discrete time Brownian motion with zero drift. That is, (pt+1−s − pt−s)s≥1 were

independently drawn from a N(0,Σ2) distribution. In equilibrium, this price history will

need to be consistent with prices generated within the model. Traders, indexed by i,

3Empirical evidence suggests that the scarring effects of personal experiences affect not only retail
investors, but also highly specialized individuals. See Malmandier and Wachter (2022).
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maximize mean-variance utility

ui(xt) = (Ei[pt+1|pt]− pt)xt −
ρ

2
Var(pt+1 − pt|pt)x2

t

where ρ denotes the risk aversion parameter.4 Demand is chosen to maximize utility,

xi(pt) =
Ei[pt+1|pt]− pt

ρΣ2

What makes each trader unique is that she believes that price increments (pt+1 − pt)

have mean µi, because certain past price realizations are more memorable. While results

will be generalized in Section 3, here we let each trader remember only one period, and

furthermore we assume that each trader has a unique memorable time period. Following

Nagel and Xu (2022), we assume that traders apply geometric weights to observations

(pt+1−s − pt−s)s≥1 when applying a memory-constrained version of Bayes’ Rule:

f(µ|pt − pt−1, , ..., pt−T+1 − pt−T ) ∝
T∏

s=1

f(pt+1−s − pt−s|µ)α
i
t (1)

where T denotes the length of the history. Note that, when αi
t = 1 for all t, this reduces to

Bayesian updating with a flat prior. Instead of the equal weighting case à la Bayes or αi
t

fading over time à la Nagel and Xu (2022), we assume that traders distinctly remember

one period i by setting weights

αi
i = γT, and

∑
t̸=i

αi
t = (1− γ)T

where 0 < γ ≤ 1 denotes idiosyncratic memory strength. Just as in the Bayesian case,

the weights add up to the number of observations, T . However, here we distribute γ

proportion of that weight to the memorable period, and the rest on all other periods.

While not explicitly written above, there is an additional assumption that weight is

distributed evenly among these remaining periods. In some sense, traders are Bayesian

over remaining periods. When a memory-constrained Bayesian after T periods forms a

4While the trader may seem myopic in the sense that she does not look beyond period (t + 1),
allocations agree with those from an infinite horizon setting with objective

∞∑
t=0

βtEi[wt+1 −
ρ

2
w2

t+1|p0] s.t. wt+1 = (pt+1 − pt)xt + wt
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posterior mean, it becomes a weighted average between what she remembers and what

she does not

µi = γ(pi − pi−1) +
1− γ

T − 1

∑
t̸=i

(pt − pt−1)

As we send the number of observations in the history, T , to infinity, by the strong law of

large numbers we have that

µi → γ(pi − pi−1) a.s.

so that non-memorable events effectively wash out.5 If γ = 0 and there are no memorable

periods, the expression above shows that traders eventually learn that the price drift is

truly zero. Since each trader recalls a different time period by assumption, the cross-

section of beliefs µi across the population approachesN(0, γ2Σ2) as the number of traders,

which we denote M , increases. More formally, the empirical distribution

FM(t) =
1

M

M∑
i=1

1µi≤t

approaches the Normal distribution almost surely as M → ∞.

Market Maker. If a randomly selected subset of traders of size n trades each period,

then a linear market maker

pt+1 = pt + c
n∑

i=1

xi(pt) (2)

ensures that prices follow a discrete time Brownian motion.6 Normality follows from the

fact that the sum of i.i.d. Normal random variables in (2) is also Normal. Furthermore,

Σ2 = cγ
√
n/ρ is the unique value that makes the variance of historical prices match that

of current prices. It is an equilibrium object. When Σ2 is too large (small), past price

volatility makes traders trade too little (much), leading to prices characterized by too

little (much) volatility according to (2). Note that the indexes of traders who trade in any

given period are exogenous random variables (in fact, the only ones), and are assumed

to be independently drawn across periods. This modeling assumption is motivated by

recent survey findings that beliefs do not predict when investors trade, only the direction

and magnitude of trades. See Giglio et al. (2021).

5Unlike in Nagel and Xu (2022), here there is no residual subjective uncertainty. That is, the variance
of the posterior tends to zero. Hence, volatility in this model comes from objective uncertainty over
prices, not subjective uncertainty over µ.

6To achieve a geometric Brownian motion, we can redefine all prices in logs.
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The market maker has the following microfoundation also used in Teeple (2022). We

set up the market maker objective function according to the three published objectives

of the NYSE’s designated market maker: prioritize price discovery, lower volatility, and

provide liquidity.

max
pt+1

pt+1

∑
i

xi(pt)−
1

2c
(pt+1 − pt)

2

Note that the first term above corresponds to price discovery, and is precisely the objective

of the classical Walrasian auctioneer.7 The incentive to raise prices on days with excess

demand and lower prices on days with excess supply is evident in this term. In the

classical general equilibrium setting, the fixed point of such a maximization problem is

studied; here we do not abstract away from preceding dynamics. The second term above

corresponds to the second objective of the designated market maker (lowering volatility).

The parameter c controls the relative weight allocated between these first two objectives.

Such an objective function implies that the market maker must provide liquidity (its

third goal); she injects extra liquidity into the market by taking the opposite side to

excess demand, effectively clearing markets each period.

This objective function leads to the intuitive rule (2): the market maker maps

excess demand into higher prices and excess supply into lower prices at elasticity c. This

is consistent with empirical evidence from Chordia et al. (2002), who confirm that excess

buy (sell) orders drive up (down) returns, even at lagged time periods. For familiarity,

let us map this unconventional microstructure into a more standard one, maintaining

the same population of memory-constrained traders. Assume that the same group of n

traders trades each period (instead of n randomly drawn), that the asset pays random

dividends dt+1 (instead of zero dividends), and that the interest rate is R > 0 (instead of

zero interest rates). Demand would then be given by

xi(pt) =
Ei[pt+1 + dt+1]− (1 +R)pt

ρΣ2
=

γdi + (1− γ)E[dt+1]−Rpt
ρΣ2

where Σ2 now denotes volatility of exogenous dividends, and the second equality holds

when prices are at a steady state. The fixed point of the market maker’s rule, which

clears markets, is given by p = 1
R

(
γ
n

∑
i di + (1− γ)E[dt+1]

)
. The point of this exercise

is to emphasize that the market maker is a sensible one, which simply generates off-

equilibrium dynamics in a standard model. However, in our setup, we do away with

7This market maker does not rely on limit orders to infer the shape of trader demand functions.
Instead, she only observes the value of aggregate demand.
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dividends so that our equilibrium takes on a self-fulfilling flavor and volatility in our

setting becomes purely non-fundamental. Some form of exogenous risk is still needed,

however, and we model this by randomly drawing the identities of traders.

It is important to point out that the timing assumptions differ significantly from

standard market order models like that of Kyle (1985). There, traders face uncertainty

about the price at which their orders are executed. Here, traders are able to trade

unlimited positions at the fixed price pt. By ignoring this price impact, we are effectively

ignoring the bid-ask spread, which simplifies our model and is a reasonable assumption

when spreads are small. Teeple (2023) introduces the spread in a similar setting but with

no memory constraints. There, a revenue-maximizing market maker is shown to have

the same qualitative properties as the one described here.

Because traders trade on random days, it is assumed that they buy (sell) on such

days at price pt then sell (buy) on the very next day at price pt+1.
8 Importantly, they do

not hold the asset between two randomly chosen trading days. This has implications for

both earnings and inventories of the market maker. In terms of earnings, prices according

to (2) rise (fall) when the market maker takes a short (long) position. In other words,

the market maker loses money each period. This observation is consistent with empirical

evidence from Sofianos (1995) that market makers incur positioning losses on their in-

ventory, which are compensated by revenues from spreads (not modeled here). In terms

of inventories, when the market maker takes a long (short) position, she buys (sells) at

price pt then sells (buys) at price pt+1. Hence her inventories in any given period are

−
∑

i x
i(pt), but importantly, she does not accumulate inventories across periods. This

is observationally consistent with mean-reversion theories of market maker inventories.

For example, see Hasbrouck and Sofianos (1993).

Discussion. While markets do not clear in the traditional sense (they do clear when the

market maker’s position is accounted for), we maintain the standard assumption that

markets are competitive. With few traders, each has a non-negligible own price impact.

Optimizing over this price impact, even with memory constraints, could allow traders to

do better than the demand functions described here. Furthermore, without competitive

markets, traders may form beliefs about others; here, they only need to form beliefs

about the statistical properties of prices.

Notice that we make no claims about how this Brownian equilibrium is initially

8The second half of this round trip is not included in the excess demand for period (t+ 1).
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approached. In the example there is a one-to-one mapping between time periods and

traders, so we order the traders according to time and begin the model after an infinite

amount of time has passed. One might ask: What, then, do traders do if their memorable

period has not yet occurred? One natural approach is to assume they are Bayesian and,

hence, do not trade. An alternative simple approach is to assume that the subset of

size n (that trades) is selected from the set of traders who have already observed their

memorable period. While the two approaches carry slightly different interpretations,

ultimately the modelling choice is inconsequential for our main results.

Prices are volatile because they have always been volatile; past volatility is what

creates the required cross-sectional dispersion in beliefs. A natural next question is

whether the Brownian motion is the unique equilibrium price process. This question will

be addressed in the next section, along with relaxations of the requirement that each

trader remember one period disjoint from any other trader.

3 Generalizations

Before any generalizations, we define our equilibrium concept. The price history is ini-

tially drawn from some distribution. Based on their imperfect memory, traders disagree

and trade; and based on the market maker, prices adjust. We require that the distribu-

tion of prices generated by the model be precisely the one from which the price history

was initally drawn. Formally, an equilibrium is a price history Ht, trader demands xi(pt),

and a price distribution Ft satisfying:

(a) Given the recollection Hi
t ⊂ Ht and conjecture Σ2

t , x
i(pt) solves each trader’s opti-

mization problem if they are in the active group, i ∈ At. Otherwise, xi(pt) = 0.

(b) The market maker generates prices drawn from Ft, where Ft is consistent with

history Ht and VarFt(pt+1 − pt) = Σ2
t .

Furthermore, we focus our attention on steady-state equilibria where Ft = F (Σ2
t = Σ2)

for all t. Consider the benchmark Brownian motion from Section 2. Interestingly, the

drift of the Brownian motion (or lack thereof) is unique. To understand why, consider

the following extension of the model. Instead of assuming that the asset is in net zero

supply, say that the asset has an exogenous, deterministic supply S > 0. The natural
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extension of the market maker’s objective is

max
pt+1

pt+1

(∑
i

xi(pt)− S

)
− 1

2c
(pt+1 − pt)

2

which yields the following generalization of (2)

pt+1 = pt + c

(∑
i

xi(pt)− S

)
(3)

so that, just like before, prices rise (fall) when excess demand is positive (negative).

Assuming that the price history has a drift of µ, beliefs converge almost surely to

µi = γ(pi − pi−1) + (1− γ)µ

and the cross-section of beliefs µi across the population then approaches N(µ, γ2Σ2). The

equilibrium drift µ can then be found by taking the expectation of the market maker’s

rule (3). With some algebra, this condition reduces to

µ =
cS

cn/(ρΣ2)− 1

The intuition is that positive drift generates excess demand; this, in turn, requires a

positive asset supply.9 Importantly, µ = 0 when S = 0, establishing the uniqueness of

zero drift in the baseline setting.

Since both variance (pinned down in Section 2) and drift are unique, we say that

the equilibrium is unique. However, we can say more by making use of the following

well-known statistical fact: if a linear combination of two independent random variables

with some distribution has that same distribution, it is said to be stable. Let us con-

sider the implications for our model, where demand is linear in past prices due to the

mean-variance assumption, and prices are linear in demand due to the nature of the

market maker objective. Equilibrium requires that the past price distribution match

the current one, so the only candidate for the equilibrium distribution is the stable-α

distribution. Furthermore, there is only one distribution in the stable-α family that has

a finite variance: the Normal distribution. Hence the Brownian motion (with drift and

variance pinned down) is not just an equilibrium distribution. It is the unique equilibrium

9S > 0 does not change the variance calculation, hence Σ2 = cγ
√
n/ρ like before.
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distribution.

Next we generalize several restrictive requirements of the example. First, we ex-

amine the effect of memorable periods being shared by multiple traders.10 We allow for

heterogeneity in the sense that each period may be remembered by a different (but finite)

number of traders. All proofs are in Appendix A.

Proposition 1. (Overlapping Memory) Say that each period is remembered by k

traders for k ∈ {1, ..., K} and, furthermore, say that each trader remembers only one

period. Then prices converge in distribution to a discrete time Brownian motion as

T → ∞.11

First imagine that each period is remembered by a large − but identical − number

of traders. This makes each historical price realization equally likely to be drawn from the

cross-sectional distribution over beliefs. Although there are more traders, the dispersion

of beliefs remains precisely the same as in the case with no overlap. Now consider adding

heterogeneity, which does not change the result for the following reason. First partition

the historical price realizations into ones remembered by one trader, ones remembered by

two traders, and so on. But because traders only remember one period by assumption,

this partition of past realizations also partitions the trader population. When a trader

is drawn from the cross-section, there is some chance that she is from the k-th group

(i.e. the group of traders who remember a time period remembered by k traders). In

other words, the cross-section is a mixture of these k groups for k = 1, ..., K. Previous

arguments for the homogeneous case now apply group-by-group. Prices converge to a

Brownian motion with the same equilibrium variance as in Section 2.

Next we revert back to mutually exclusive memorable events, as in the baseline

setting, but we assume that each trader remembers a finite set of periods, which gen-

eralizes the previous requirement that each trader remember one period. Analogous to

Proposition 1, by allowing for any finite set, we allow for heterogeneity: one trader may

remember two periods, while another may remember three.

Proposition 2. (Expanded Memory) Say that each trader remembers k periods for

k ∈ {1, ..., K} and, furthermore, say that no two traders’ memorable periods overlap.

10Like in Section 2, there is an implicit assumption that the indexes of memorable prices cannot be
measurable with respect to the realization. This, for example, rules out extreme prices being remembered
by more traders. This comment also applies to Proposition 2.

11Note that sending the history T → ∞ implies that the number of traders M → ∞ at the same rate.
This comment also applies to Proposition 2.
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Then prices converge in distribution to a discrete time Brownian motion as n → ∞ and

T → ∞.

First consider the homogeneous case, where all traders remember the same number,

k, of disjoint periods. If multiple events are memorable, good days and bad days begin

to cancel each other out within the memorable set. Hence, traders with a larger set of

memorable events hold less dispersed, or tighter, beliefs. This, in itself, is not problematic

and simply lowers the equilibrium variance, Σ2. See Figure 1 for the cross-sectional

distribution over µi for traders who remember 1, 2, and 3 disjoint periods (memory

parameter γ is set to one).

Figure 1: Cross-Section with Expanded Memory

Now consider adding heterogeneity in memory length. Interestingly, the cross-

sectional distribution of beliefs is not Normal due to heterogeneity in the population,

because the mixture of Normal distributions need not be Normal. That is, when drawing

a trader from the cross-section, there is some chance she is inexperienced (few memorable

periods, with dispersed beliefs) and some chance she is experienced (many memorable

periods, with tight beliefs). So while the cross-section need not be Normal, the Lindeberg-

Lévy theorem applies when n is large and the market maker ensures that prices continue

to follow a Brownian motion. Sending n → ∞ is with loss of generality, because con-

clusions from Section 2 hold for any n.12 A similar line of reasoning can be applied to

12As n grows, so does the equilibrium variance. To deal with this fact, we normalize the equilibrium
variance to one and find a market maker constant, c, consistent with that normalization.
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heterogeneous memory strength γi and risk aversion ρi. As in Proposition 2, the cross-

sectional distribution of beliefs need not be Normal. However, prices are Normal due to

the central limit theorem.

Next, we recast this last result not as a negative one (i.e. failure of Normality) but

as a positive one (i.e. interesting properties of equilibrium prices). In particular, we show

that mixing distributions with different variances in the cross-section results in excess

kurtosis in equilibrium prices.

4 Active Trading Days

Up until this point, we have taken the days which each trader remembers as given. The

setting we consider now is that of Section 2 except for the following changes. When

the random subset of size n trade, they remember that period’s return (after they trade

and the return is realized). The memory parameter, γ, is set to one so that only such

days are remembered.13 In the background, we assume that there is a cost of paying

attention on non-active days that makes it prohibitively costly for traders to do so. This

is consistent with empirical evidence that traders disproportionately use active trading

days (more than inactive ones) to form beliefs about future returns (see Andersen et al.

(2019) and Strahilevitz et al. (2011)). With this new setup, the cross-section of traders

would continuously learn. To regain stationarity in our model, we assume that D > 0

traders die each period and are consequently replaced by D new traders.

The steady-state cross-section of traders is characterized by a sequence (Pj)
∞
j=0,

which represents the proportion of the population that remembers j days. We first

analyze the case where the number of traders, M , is finite, then take limits. When M is

finite but large (in particular, M > n+D), the law of motion for Pj is given by

P t+1
j =

P t
j

(
1− D

M
− n

M

)
+ D

M
, if j = 0

P t
j

(
1− D

M
− n

M

)
+ P t

j−1
n
M
, otherwise

When j = 0, the proportion decreases by a factor D
M

due to death, and by another factor
n
M

due to active trading, learning, and traders consequently leaving group P t
0 for group

13When γ < 1, we previously assumed that traders were Bayesian before their memorable period
occurred. When γ = 1 and their memorable period has yet to occur, traders put full weight on their
(flat) prior. We assume this has mean zero so they do not trade.
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P t+1
1 . The proportion increases by the amount D

M
due to the introduction of new traders.

When j > 0, the proportion decreases for the exact same reasons. The proportion

increases by the amount P t
j−1

n
M

due to active trading, learning, and traders consequently

entering group P t+1
j from group P t

j−1. The steady state of such a system is geometric:

P =

(
D

D + n
,

Dn

(D + n)2
,

Dn2

(D + n)3
, ...

)
(4)

and, importantly, is independent of M . As an example, consider the special case when

D = n so that traders die at the same rate that they learn. Then the steady state is(
1
2
, 1
4
, 1
8
, ...
)
. Now consider the equilibrium conjecture, Σ2. Recall that the market maker

generates prices according to the rule (2). If the trader drawn from the cross section

remembers k periods, the variance of demand would be

Var

( 1
k

∑
t∈Ki(pt − pt−1)

ρΣ2

)
=

1

kρ2Σ2
(5)

where Ki denotes the set of memorable periods for trader i. In (5), when traders re-

member k periods, they take the average of those k periods when forming their posterior

mean. While this is consistent with Section 2, the observant reader will have noticed that

traders may not use the sample average as their Bayesian posterior mean when prices

are not Normal. Indeed, the upcoming theorem states that prices have heavy tails (i.e.

non-Normal). Despite the well-known difficulties in deriving a closed-form solution for

the posterior mean of arbitrary distributions, our first lemma addresses this issue.

Lemma 1. (Posterior Consistency) Say that traders calculate their posterior ac-

cording to memory-constrained Bayes’ Rule (1), with weights given by

αi
t =

γT/|Ki| for t ∈ Ki

(1− γ)T/(T − |Ki|) otherwise
(6)

As the history T → ∞, their posterior mean approaches

µi =
γ

|Ki|
∑
t∈Ki

(pt − pt−1) + (1− γ)µ

irrespective of the price distribution.

Recall that µ denotes the mean of the price distribution (zero in our setting) and
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Ki denotes the memorable set for trader i. When this set consists of only one period, the

weights in (6) collapse precisely to those described in Section 2. Now consider |Ki| > 1.

Just like in Section 2, the total weight adds up to T , with γ proportion of that weight

distributed evenly across memorable periods. So how do we circumvent the usual alge-

braic difficulties when dealing with non-Normal posteriors? The key is in the qualifier,

T → ∞. Asymptotically, there are results from probability theory that guarantee con-

sistency of the Bayesian posterior mean. In order to invoke these, we consider a mixture

distribution that generates precisely the same frequency of observations as in (1). With

probability γ/|Ki|, (pt − pt−1) is drawn for each t ∈ Ki. With probability (1− γ), prices

are independently drawn from the price distribution. The mean of such a distribution

must equal the value µi described in Lemma 1. What makes this work is that the weights

in (6) have been selected so that it is as-if the trader not only observes an infinite number

of independent observations from the price distribution, but also an infinite number of

observations of (pt − pt−1) for each t ∈ Ki. As T → ∞, they become sure that their

posterior mean is µi (i.e. the posterior variance tends to zero).

Going back to the variance calculation (5), we must proceed with caution because an

implicit assumption in this calculation is that prices are independent. Price independence

is implied by two further assumptions. First, the same trader can never be drawn twice

in a span of k periods. This guarantees that all kn traders who generated these k prices

are unique. Second, there can be no overlap in beliefs between a set of kn traders. This

furthermore guarantees that the k prices in (5) were generated by traders whose beliefs

are based on mutually exclusive past price realizations. These two points are confirmed

in the next lemma.

Lemma 2. (Price Independence) Assume that the maximum number of periods re-

membered in the economy is K. As the number of traders M → ∞, the probability of the

same trader trading twice in a span of k periods becomes zero. As the history T → ∞,

the probability that kn traders’ beliefs overlap becomes zero.

The key to the lemma is that we truncate the cross-section of the economy, (4), at a

large number K. That is, we ignore traders who remember an arbitrarily large number of

past periods. This is justified for two reasons. First, such traders do not contribute to our

economy in the sense that they trade close to zero. Second, such traders have small mass

according to (4). Hence, the economy considered in Lemma 2 becomes arbitrarily close

to the true cross-section when K is large. Note that this need not be true if, for example,

traders who remembered more periods traded proportionately more (not less). Beyond
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this important observation, Lemma 2 follows from a direct computation of probabilities.

Continuing the variance calculation, because the cross-section is distributed accord-

ing to the geometric distribution (4), each demand has variance

Var(xi(pt)) =
D

D + n

∞∑
k=1

(
n

D + n

)k
1

kρ2Σ2
=

D
(D + n)ρ2Σ2

ln

(
D + n

D

)

Now taking the variance of the market maker condition (2), we have that

Σ2 =
c2n

ρ2Σ2

D
D + n

ln

(
D + n

D

)
which can be solved for Σ2. Note that, in this calculation above, we have again invoked

the assumption − proved in Lemma 2 − that demands are independent (i.e. no overlap

in beliefs). Next we consider price tails. The fourth price moment is14

µ4 = c4E

(∑
i

xi(pt)

)4
 = c4

(
nE[xi(pt)

4] + 3n(n− 1)E[xi(pt)
2]2
)

(7)

assuming that E[xi(pt)] = 0.15 The next theorem shows that this object (7), normalized

by the squared variance, is always greater than three. In other words, equilibrium prices

characterized by a mixture of traders distributed according to the cross-section (4) have

heavy tails.16

Theorem 1. (Heavy Tails) µ4/(Σ2)2 ≥ 3, and the inequality holds with equality if and

only if n → ∞.

We conclude that prices are heavy-tailed, and that the effect disappears only when

n → ∞ and central limit theorems apply. Figure 2 shows how mixing leads to heavy

tails, using two Normal distributions with mean zero and differing variances. For visual

clarity, the mixture fractions here are set to 1
2
and 1

2
. In words, heavy tails result from

a small chance of the trader being drawn from the high variance distribution. However,

this argument only guarantees that the cross-section has heavy tails, not prices. Prices

arise from the sum of n traders’ demands, and summing random variables reduces excess

14This formula is derived from an induction argument.
15That prices have zero drift can be shown using an argument like the one in Section 3.
16Because the upcoming theorem considers the case n → ∞ (alongside the finite case), the model is

no longer stationarity when D is a fixed number. Hence we assume that D = δn for some δ > 0. This is
without loss in the finite (n < ∞) case.
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kurtosis due to the central limit theorem. Theorem 1 can be understood as characterizing

the net effect between these two competing forces (mixing and summing).

Figure 2: Heavy-Tailed Mixture Distributions

The explanation for heavy tails proposed here is distinct from those previously

proposed in the literature. For example, Gabaix et al. (2006) cite heavy tails in wealth,

Cont and Bouchaud (2000) cite imitation among traders, and Thurner et al. (2012)

cite leverage effects. Here, heavy tails come from the mixing of random variables with

different variances. Extreme price events occur when young traders, understood as those

who have experienced only a few past trades, all trade in a given period. This is consistent

with survey evidence in Giglio et al. (2021), who find that older individuals’ subjective

distributions over future stock returns have lower standard deviations (than those of

young individuals) and, furthermore, they assign smaller probabilities to extreme events

such as large stock market declines.

5 Policy

We consider three policies to reduce price variance in the baseline model from Section

2: a transaction tax, a capital gains tax, and tightened borrowing constraints. Certain

policies may make equilibrium prices non-Normal. However, Lemma 1 guarantees that

this is not problematic, at least from the perspective of Bayesian estimation.
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Transaction Tax. While mean-variance utility was previously used without formal

derivation, here we begin with the trader’s budget set today:

xtpt + at = 0

where at denotes the quantity saved (or borrowed) of a riskless asset. Notice that we

have normalized today’s wealth (RHS of equation) to zero, which would be with loss of

generality if we were to consider an infinite horizon objective. The budget set tomorrow

is:

wt+1 = xtpt+1 + at

where wt+1 denotes wealth. Plugging the first budget set into the second, we recover the

objective of the trader from Section 2. Instead, the trader’s wealth with a transaction

tax r > 0 is

wt+1 = (pt+1 − pt)xt − r|xt|

In terms of implications for trade, the tax creates an inaction zone, where traders

for whom Ei[pt+1|pt] ≈ pt choose not to trade. This can be seen formally in the new

demand function:

xi
t =


Ei[pt+1|pt]−pt−r

ρΣ2 , if Ei[pt+1|pt]− pt > r

Ei[pt+1|pt]−pt+r
ρΣ2 , if Ei[pt+1|pt]− pt < −r

0, otherwise

Traders who remain active in financial markets trade smaller quantities. While it may

seem immediate that the price variance in the following period is reduced, we must

be mindful of equilibrium effects. Lowered price volatility can make financial markets

look more attractive, thereby increasing trade. Note that the upcoming Proposition 3

describes a new equilibrium, presumably a sufficient amount of time after the policy

change has been enacted. This qualifier is needed, because the price history must also

reflect the effects of the policy.17

Proposition 3. (Transaction Tax) ∂Σ
∂r

< 0 for small values of r.

Consider the cross-section of demands. The tails have been shifted inwards toward

17The same comment applies to Proposition 4.
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the origin, because potential market gains − in either direction − are reduced by the

amount of the tax. The middle range of the distribution has been removed altogether,

because the cost of trading entirely outweighs the benefits for such traders. See Figure 3

for an illustration of this truncated cross-section of demands xi
t. With this lowered dis-

persion of demands, we find that equilibrium price variance is reduced when transaction

taxes are reasonably small.

xi
t

Density

Figure 3: Truncated Cross-Section of Demands

Capital Gains Tax. We model the capital gains tax with an adjusted budget set:

wt+1 = (1− τ)(pt+1 − pt)xt

where the tax is in the range 0 < τ < 1. Again we must consider the equilibrium effects

of the tax. Price variance must solve a fixed point condition

Σ2 = c2Var

[
n∑

i=1

(1− τ)γ(pi − pi−1)

ρ(1− τ)2Σ2

]

where the term inside the brackets is the capital gains-adjusted aggregate demand. This

condition is solved by Σ2 = cγ
√
n

ρ(1−τ)
, so that taxes are actually counterproductive. To un-

derstand why, consider two competing forces: dampened capital gains versus dampened

wealth variance. The calculation above shows that the latter force outweighs the former,

leading to more trade in equilibrium and (unintentionally) higher price volatility. We
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conclude that a capital gains tax is an ineffective policy tool in this setting.

Borrowing Constraints. The final policy that we consider is a borrowing constraint.

In addition to the standard budget constraint, we introduce two additional constraints

at ≥ −ptb, xt ≥ −b

where b > 0 denotes the real borrowing constraint. When traders take a long position on

the risky asset, xt > 0, the first constraint applies and represents a standard borrowing

constraint on the riskless asset. When traders take a short position on the risky asset,

xt < 0, the second constraint applies and limits the quantity borrowed of the risky asset.

Substituting in today’s budget constraint, the two new constraints reduce to:

|xt| ≤ b

This effectively truncates demand tails. Demand functions become

xi
t =


b, if Ei[pt+1|pt]−pt

ρΣ2 > b

−b, if Ei[pt+1|pt]−pt
ρΣ2 < −b

Ei[pt+1|pt]−pt
ρΣ2 , otherwise

Proposition 4. (Borrowing Constraints) ∂Σ
∂b

> 0 for large values of b.

As we tighten the constraint (decrease b), price variance is reduced as desired. And

the result holds when b is large (i.e. the borrowing constraint is relatively loose). Lastly,

we discuss differences between the two effective policies in terms of their distributional

effects. In the case of transaction taxes, traders with moderate beliefs trade zero, and

those with tail beliefs reduce, or shift, their amount of trade by the quantity r
ρΣ2 . In the

case of borrowing limits, demand is truncated for traders with extreme beliefs. Hence

transaction taxes effectively target the center of the distribution, while borrowing limits

effectively target the tails of the distribution. Beyond our setting, where the distribution

simply captures belief dispersion, this discussion may have consequences in settings where

the distribution is also related to trader wealth.

While both transaction taxes and borrowing limits are effective policy tools, capital

gains taxes are not. This is due to the additive nature of the two effective policies. The

two policies truncate expected gains, without directly affecting the wealth variance (there
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are indirect effects that work through prices, which were the focus of Propositions 3 and

4). In contrast, capital gains taxes are multiplicative. This multiplicative property not

only leads to dampened capital gains, but also directly dampens wealth volatility; the

net effect is (inadvertent) increased trade.

6 Conclusion

We have proposed a simple mechanism − idiosyncratic memory − to explain non-

fundamental volatility and heavy tails in financial markets. When some traders recall

bear markets and others recall bull markets, this creates belief dispersion in the cross-

section and, hence, a motive for trade. The first key takeaway from the paper is that we

live, in some sense, in a bad equilibrium: past volatility is what guarantees enough belief

dispersion to generate current volatility. The Brownian motion is the unique equilibrium

price process, and resulting volatility can be classified as purely non-fundamental.

We then formally modeled one reason why traders might have idiosyncratic memory:

paying attention on active trading days. The cross-section of traders consists of the young

(those who remember few trading days and have dispersed beliefs) and the old (those

who remember many trading days and have tight beliefs). The mixture distribution over

such demographics is not Normal, which leads to equilibrium prices that are not Normal.

This is the second key takeaway from the paper: we have identified a novel mechanism

for generating prices with excess kurtosis. Extreme prices result from the small chance

that all traders trading on a given day are young.

The model could be extended in several directions. First, we have assumed that

traders exogenously die in Section 4. This could be extended to a survival story, where

only traders who have sufficient funds continue to trade. Because of the lack of wealth

effects in our model, our conjecture is that most results would go through in this new

setting. Second, we assumed that traders are independently drawn from the cross-section.

Introducing persistence here could help the model better match empirical price moments.

We have abstained from this exercise in this paper, however, due to the similarities with

fading memory models à la Malmandier et al. (2020).
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Appendix A

Proof of Proposition 1. Like in Section 2, by the strong law of large numbers we have

that

µi → γ(pi − pi−1) a.s.

Let Mk denote the set of traders who remember a time period remembered by k traders

(so that M =
∑

k |Mk|), let mk denote that same set removing those with identical

beliefs (so that |Mk| = k|mk|), and let βk denote their proportion in the population (so

βk =
|Mk|
M

). Now consider the empirical distribution over the cross-section of beliefs µi in

the population:

FM(t) =
1

M

M∑
i=1

1µi≤t =
K∑
k=1

βk

|Mk|
∑
i∈Mk

1µi≤t =
K∑
k=1

βk

|Mk|
∑
i∈mk

k1µi≤t =
K∑
k=1

βk

|mk|
∑
i∈mk

1µi≤t

where the third equality follows from the fact that beliefs agree for sets of traders of

size k. The empirical distribution then converges to the N(0, γ2Σ2) almost surely as

M → ∞, so the market maker ensures that prices converge in distribution to the discrete

time Brownian motion with the same equilibrium variance as the Motivating Example,

Σ2 = cγ
√
n/ρ.

Proof of Proposition 2. As n grows, so does the equilibrium variance. As men-

tioned in the main text, we normalize the equilibrium variance to one, and find a market

maker constant, c, consistent with that normalization. Let Ki denote the set of memo-

rable periods for trader i, so |Ki| = k. The weights associated with memory-constrained

Bayes’ Rule adjust to: ∑
t∈Ki

αi
t = γT, and

∑
t/∈Ki

αi
t = (1− γ)T

for 0 < γ ≤ 1. Then, after T periods, the posterior mean becomes

µ(Ki) =
γ

k

∑
t∈Ki

(pt − pt−1) +
1− γ

T − k

∑
t/∈Ki

(pt − pt−1)
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which nests the Motivating Example as a special case when k = 1. Like before, the

strong law of large numbers holds as T → ∞, and we have that

µ(Ki) → γ

k

∑
t∈Ki

(pt − pt−1) a.s.

Let Mk denote the set of traders who remember k periods (so
∑

k |Mk| = M), and let βk

denote their proportion in the population (so |Mk|
M

= βk). The empirical distribution can

be written

FM(t) =
1

M

M∑
i=1

1µ(Ki)≤t =
K∑
k=1

βk

|Mk|
∑
i∈Mk

1µ(Ki)≤t

For each k, the empirical distribution approaches N(0, γ2/k) almost surely. The entire

empirical distribution is a mixture of these Normal distributions, weighted by βk, which

need not be Normal. However, a straightforward calculation yields a mean of zero, and

variance
K∑
k=1

βk(E[X2
k ]) =

K∑
k=1

βk
γ2

k

because Xk ∼ N(0, γ2/k). If a randomly selected subset of size n trades each period,

then the market maker (2) ensures that prices follow a discrete time Brownian motion

with variance one when c = ρ

γ
√

n
∑

k βk/k
as n → ∞.

Proof of Lemma 1. The posterior according to memory-constrained Bayes’ Rule (1)

and weights (6) is given by

f(µ|pt−pt−1, , ..., pt−T+1−pt−T ) ∝
∏
t∈Ki

f(pt−pt−1|µ)γT/|K
i|
∏
t/∈Ki

f(pt−pt−1|µ)(1−γ)T/(T−|Ki|)

As T → ∞, this posterior approaches the one that would have been generated from i.i.d.

draws from a distribution − call it F − where, with probability γ/|Ki|, (pt − pt−1) is

drawn for each t ∈ Ki; and with probability (1−γ), prices are drawn independently from

the price distribution. Mixture distributions have an expected value that is equal to the

mixture of the expected values:

EF [µ] =
γ

|Ki|
∑
t∈Ki

(pt − pt−1) + (1− γ)µ
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By the theorem of Doob (1949), the posterior mean µi converges to EF [µ] almost surely.

Proof of Lemma 2. Let M be large but finite (in particular, M > kn). The probability

of the same trader trading twice or more in a span of k periods is

P(M,n, k) =1−
(
M − n

M

)(
M − n− 1

M − 1

)
...

(
M − n− [n− 1]

M − [n− 1]

)
︸ ︷︷ ︸

Second period

...

...

(
M − [k − 1]n

M

)(
M − [k − 1]n− 1

M − 1

)
...

(
M − [k − 1]n− [n− 1]

M − [n− 1]

)
︸ ︷︷ ︸

k-th period

which assumes that traders are independently drawn. Importantly, we have that

lim
M→∞

P(M,n, k) = 0

Now let T be large but finite (in particular, T > knK). The probability that kn traders’

beliefs have any amount of overlap is bounded from above by the following, assuming the

worst-case scenario where all kn traders remember K periods

Q(T, n, k,K) =1−
(
T −K

T

)(
T −K − 1

T − 1

)
...

(
T −K − [K − 1]

T − [K − 1]

)
︸ ︷︷ ︸

Second trader

...

...

(
T − [kn− 1]K

T

)(
T − [kn− 1]K − 1

T − 1

)
...

(
T − [kn− 1]K − [K − 1]

T − [K − 1]

)
︸ ︷︷ ︸

kn-th trader

which assumes that traders’ beliefs are independently drawn. Like before, we have that

limT→∞Q(T, n, k,K) = 0.

Proof of Theorem 1. If the trader drawn from the cross section remembers k pe-

riods, the fourth moment of demand would be

E

[( 1
k

∑
t∈Ki(pt − pt−1)

ρΣ2

)4
]
=

kµ4 + 3k(k − 1)(Σ2)2

k4ρ4(Σ2)4
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Since the cross section is distributed according the geometric distribution (4), each de-

mand has fourth moment

E[xi(pt)
4] =

D
D + n

∞∑
k=1

(
n

D + n

)k
kµ4 + 3k(k − 1)(Σ2)2

k4ρ4(Σ2)4

=
D

D + n

[
µ4 − 3(Σ2)2

ρ4(Σ2)4

∞∑
k=1

(
n

D + n

)k
1

k3
+

3

ρ4(Σ2)2

∞∑
k=1

(
n

D + n

)k
1

k2

]

=
D

D + n

[
µ4 − 3(Σ2)2

ρ4(Σ2)4
Li3

(
n

D + n

)
+

3

ρ4(Σ2)2
Li2

(
n

D + n

)]
where Lin(·) denotes the polylogarithm function. First we confirm equality in the case

n → ∞. Based on the discussion in the main text, we write D = δn so that n
D+n

= 1
δ+1

and D
D+n

= δ
δ+1

. Plugging in our expressions into the fourth price moment (7) and

dividing by (Σ2)2

3 = lim
n→∞

c4
(

δn
δ+1

3
ρ4(Σ2)2

Li2
(

1
δ+1

)
+ 3n(n− 1)

(
δln([δ+1]/δ)
(δ+1)ρ2Σ2

)2)
(Σ2)2

(8)

Using the fact that Σ2 = c2n
ρ2Σ2

δ
δ+1

ln
(
δ+1
δ

)
and simplifying,

3 = lim
n→∞

3n(δ+1)
δ

Li2
(

1
δ+1

)
+ 3n(n− 1)ln

(
δ+1
δ

)2
n2ln

(
δ+1
δ

)2
From this expression, only O(n2) terms remain and this proves the desired equality. Next

we show that price kurtosis, µ4/(Σ2)2, is always greater than 3 when n is finite. We follow

similar steps as in the infinite case, calculating the RHS of (8)

RHS =

c4
(

δn
δ+1

[
ε

ρ4(Σ2)2
Li3
(

1
δ+1

)
+ 3

ρ4(Σ2)2
Li2
(

1
δ+1

)]
+ 3n(n− 1)

(
δln([δ+1]/δ)
(δ+1)ρ2Σ2

)2)
(Σ2)2

where

ε ≡ µ4 − 3(Σ2)2

(Σ2)2
> 0
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Simplifying,

RHS =

n(δ+1)
δ

[
εLi3

(
1

δ+1

)
+ 3Li2

(
1

δ+1

)]
+ 3n(n− 1)ln

(
δ+1
δ

)2
n2ln

(
δ+1
δ

)2
=3 +

n(δ+1)
δ

[
εLi3

(
1

δ+1

)
+ 3Li2

(
1

δ+1

)]
− 3nln

(
δ+1
δ

)2
n2ln

(
δ+1
δ

)2
Because Li3

(
1

δ+1

)
> 0, for our desired result it suffices to show that

δ + 1

δ
Li2

(
1

δ + 1

)
≥ ln

(
δ + 1

δ

)2

(9)

Using the fact that Li2(1− x) =
∫ x

1
ln(u)
1−u

du, we can rewrite (9) as

∫ δ
δ+1

1

ln(u)

1− u
du ≥

∫ δ
δ+1

1

[ln(u)2 + 2ln(u)]du

where the integrand on the RHS is precisely the function that, when integrated, equals
δ

δ+1
ln
(
δ+1
δ

)2
. With some algebra, we get

∫ 1

δ
δ+1

ln(u)

(
1

1− u
− ln(u)− 2

)
du ≤ 0

A sufficient condition for this is

f(u) ≡ 1

1− u
− ln(u)− 2 ≥ 0, for u ∈ (0, 1)

The function on the LHS of the inequality is strictly convex in this interval, and hence

its minimum is defined by the first-order condition

1

(1− u∗)2
− 1

u∗ = 0 ⇐⇒ u∗ =
3−

√
5

2

Checking the function value f(u∗) > 0 completes the argument.

Proof of Proposition 3. The price variance Σ2 must solve the following fixed point
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condition

Σ2 =
c2γ2n

ρ2Σ4

∫ 0

−∞
x2f(x− r/γ)dx+

c2γ2n

ρ2Σ4

∫ ∞

0

x2f(x+ r/γ)dx,

where f(x) denotes the price density. The RHS of the condition above is the variance of

a distribution where the middle range [−r/γ, r/γ] of beliefs has been removed, and the

tails (−∞,−r/γ)∪ (r/γ,∞) have been shifted inwards toward the origin. Note that the

factor γ follows from the following rewriting of demand

xi
t =


γ (pi−pi−1)−r/γ

ρΣ2 , if (pi − pi−1) > r/γ

γ (pi−pi−1)+r/γ
ρΣ2 , if (pi − pi−1) < −r/γ

0, otherwise

Denote the function g(r,Σ) as

g(r,Σ) =
c2γ2n

ρ2

∫ 0

−∞
x2f(x− r/γ)dx+

c2γ2n

ρ2

∫ ∞

0

x2f(x+ r/γ)dx− Σ6

First we make the change of variable, u = x− r/γ (for the second integral, u = x+ r/γ)

g(r,Σ) =
c2γ2n

ρ2

∫ −r/γ

−∞
(u+ r/γ)2f(u)du+

c2γ2n

ρ2

∫ ∞

r/γ

(u− r/γ)2f(u)du− Σ6

and applying the Leibniz integral rule, we have that

∂g

∂r
=

c2γn

ρ2

∫ −r/γ

−∞
2(u+ r/γ)f(u)du− c2γn

ρ2

∫ ∞

r/γ

2(u− r/γ)f(u)du < 0

where the inequality follows from the fact that, in the first (second) integral, u is always

evaluated below −r/γ (above r/γ). When r is near zero, we also have that

∂g

∂Σ
≈c2γ2n

ρ2

∫ ∞

−∞
u2 ∂f

∂Σ
(u)du− 6Σ5

=
∂

∂Σ

[
c2γ2n

ρ2

∫ ∞

−∞
u2f(u)du

]
− 6Σ5

=
c2γ2n

ρ2
2Σ− 6Σ5
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But because the derivative is evaluated near r = 0, we know that the equilibrium Σ2 ≈
cγ
√
n/ρ. Plugging this in,

∂g

∂Σ
≈ 2Σ5 − 6Σ5 < 0

Altogether, by the implicit function theorem, we have that ∂Σ
∂r

= − ∂g/∂r
∂g/∂Σ

< 0.

Proof of Proposition 4. The price variance solves the following fixed point condi-

tion

Σ2 =
c2γ2n

ρ2Σ4

∫ bρΣ2/γ

−bρΣ2/γ

x2f(x)dx+ c2n

∫ ∞

bρΣ2/γ

b
2
f(x)dx+ c2n

∫ −bρΣ2/γ

−∞
b
2
f(x)dx

where f(x) denotes the price density. The first term on the RHS corresponds to traders

unconstrained by the borrowing constraint. The second and third terms on the RHS

correspond to all extreme traders whose demands have been truncated by the borrowing

constraint. Note that the limits of integration follow from the following rewriting of

demand

xi
t =


b, if (pi − pi−1) > bρΣ2/γ

−b, if (pi − pi−1) < −bρΣ2/γ

γ(pi−pi−1)
ρΣ2 , otherwise

Define the function g(b,Σ) as

g(b,Σ) =
c2γ2n

ρ2

∫ bρΣ2/γ

−bρΣ2/γ

x2f(x)dx+c2nΣ4

∫ ∞

bρΣ2/γ

b
2
f(x)dx+c2nΣ4

∫ −bρΣ2/γ

−∞
b
2
f(x)dx−Σ6

and we apply the Leibniz integral rule.

∂g

∂b
= c2nΣ4

[∫ ∞

bρΣ2/γ

2bf(x)dx+

∫ −bρΣ2/γ

−∞
2bf(x)dx

]
> 0
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where the inequality follows from direct computation of the integrals. Applying the

Leibniz integral rule once again,

∂g

∂Σ

=c2n

[
γ2

ρ2

∫ bρΣ2/γ

−bρΣ2/γ

x2 ∂f

∂Σ
(x)dx+ Σ4

∫ ∞

bρΣ2/γ

b
2 ∂f

∂Σ
(x)dx+ Σ4

∫ −bρΣ2/γ

−∞
b
2 ∂f

∂Σ
(x)dx

]
− 6Σ5 + ε

=c2n
∂

∂Σ

[
γ2

ρ2

∫ bρΣ
2
/γ

−bρΣ
2
/γ

x2f(x)dx+ Σ
4
∫ ∞

bρΣ
2
/γ

b
2
f(x)dx+ Σ

4
∫ −bρΣ

2
/γ

−∞
b
2
f(x)dx

]
− 6Σ5 + ε

≈c2n
∂

∂Σ

[
γ2

ρ2

∫ ∞

−∞
x2f(x)dx

]
− 6Σ5 + ε

=
c2γ2n

ρ2
2Σ− 6Σ5 + ε

where Σ
2
denotes the equilibrium variance but held constant (with respect to the partial

derivative), and the approximate equality holds when b is large (and, hence, the trun-

cation of the distribution by b plays little role). The variable ε denotes an error term,

which we will show disappears when b is large. Before that, because the expression above

is evaluated for a large value of b, we know that the equilibrium Σ2 ≈ cγ
√
n/ρ. Plugging

this in,
∂g

∂Σ
≈ 2Σ5 − 6Σ5 + ε < 0

when ε is small. By the implicit function theorem, we have that ∂Σ
∂b

= − ∂g/∂b
∂g/∂Σ

> 0. The

last step is to confirm that ε → 0 when b → ∞. Without limits, it is

ε ≡4c2nΣ3

[∫ ∞

bρΣ2/γ

b
2
f(x)dx+

∫ −bρΣ2/γ

−∞
b
2
f(x)dx

]
(10)

The entire term (10) tends to zero because∫ ∞

bρΣ2/γ

b
2
f(x)dx ≤

∫ ∞

bρΣ2/γ

(
xγ

ρΣ2

)2

f(x)dx → 0, as b → ∞

where the inequality holds because x ≥ bρΣ2/γ. The same argument applies to the

second term on the RHS of (10), except now x ≤ −bρΣ2/γ.
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